Semiparametric Estimation of Partially Linear Dynamic Panel Data Models with Fixed Effects∗

نویسندگان

  • Liangjun Su
  • Yonghui Zhang
چکیده

In this paper, we study a partially linear dynamic panel data model with fixed effects, where either exogenous or endogenous variables or both enter the linear part, and the lagged dependent variable together with some other exogenous variables enter the nonparametric part. Two types of estimation methods are proposed for the first differenced model. One is composed of a semiparametric GMM estimator for the finite dimensional parameter  and a local polynomial estimator for the infinite dimensional parameter  based on the empirical solutions to Fredholm integral equations of the second kind, and the other is a sieve IV estimate of the parametric and nonparametric components jointly. We study the asymptotic properties for these two types of estimates when the number of individuals  tends to ∞ and the time period  is fixed. We also propose a specification test for the linearity of the nonparametric component based on a weighted square distance between the parametric estimate under the linear restriction and the semiparametric estimate under the alternative. Monte Carlo simulations suggest that the proposed estimators and tests perform well in finite samples. We apply our new model to study the relationship between economic growth, intellectual property right (IPR) protection and initial economic condition, and detect significant nonlinear dynamic structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation in Partially Linear Single-Index Panel Data Models with Fixed Effects

In this paper, we consider semiparametric estimation in a partially linear single– index panel data model with fixed effects. Without taking the difference explicitly, we propose using a semiparametric minimum average variance estimation (SMAVE) based on a dummy–variable method to remove the fixed effects and obtain consistent estimators for both the parameters and the unknown link function. As...

متن کامل

Series Estimation of Partially Linear Panel Data Models with Fixed Effects∗

This paper considers the problem of estimating a partially linear semiparametric fixed effects panel data model with possible endogeneity. Using the series method, we establish the root N normality result for the estimator of the parametric component, and we show that the unknown function can be consistently estimated at the standard nonparametric rate.

متن کامل

Nonparametric estimation and testing of fixed effects panel data models.

In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test betw...

متن کامل

Profile Likelihood Estimation of Partially Linear Panel Data Models with Fixed Effects∗

We consider consistent estimation of partially linear panel data models with fixed effects. We propose profile-likelihood-based estimators for both the parametric and nonparametric components in the models and establish convergence rates and asymptotic normality for both estimators.

متن کامل

Consistent estimation of binary-choice panel data models with heterogeneous linear trends

This paper presents an extension of fixed effects binary choice models for panel data, to the case of heterogeneous linear trends. Two estimators are proposed: a Logit estimator based on double conditioning and a semiparametric, smoothed maximum score estimator based on double differences. We investigate small-sample properties of these estimators with a Monte Carlo simulation experiment, and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013